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Abstract. In the early 1970s, Basinski et a1 observed that, if two solid solutions of different 
solutes in a given solvent (copper or silver) had the same initial flow stress at a given 
temperature in the range 4-380 K,  then they had the same activation volume. Moreover, 
two alloys based on the same solvent metal, which had the same initial flow stress and 
activation volume at a given temperature, would show the same temperature dependence 
of initial flow stress and activation volume throughout that range. These observations, which 
are known as the ‘stress equivalence of solution hardening’, have been shown to be readily 
accounted for in terms of the kink-pair formation model of solid-solution hardening. 

1. Introduction 

Some experiments of considerable potential implications in relation to solid-solution 
hardening (SSH) theory were carried out by Basinski et a1 [ 11 with alloy single crystals of 
high structural perfection and purity. The binary and ternary solid solutions used by 
them were of copper (with AI, Ag, Si and Ni) and silver (with In, Sn and Au), whereas 
the solute concentration ranged from 0.01 to 20 at .%. They found that, if some solid 
solutions of different solutes in any of these two solvent metals had the same critical 
resolved shear stress (CRSS) at a given temperature in the range 4-380 K,  then they had 
the same activation volume as well. Moreover, alloys with the same CRSS at a given 
temperature had coincident values of the CRSS at all other temperatures in the range 
studied; a similar correlation holds for the temperature dependence of the activation 
volume. Basinski et a1 [ 11 termed these features ‘stress equivalence of solution harden- 
ing’. They also inferred from their experimental data that a single mechanism, inde- 
pendent of the particular interaction between dislocations and solute atoms, was 
responsible for SSH in close-packed metals and that SSH theories would have to be based 
on models in which the unit activation process involves the interaction between a 
dislocation and many solute atoms, except probably in rather dilute alloys. 

The observations referred to above, among others, are of basic significance, for any 
adequate theory of SSH must be able to account for them. As the parameters studied by 
Basinski et a1 [ l ]  could be defined analytically within the framework of the kink-pair 
formation (KPF) model Of SSH [2-4], it seemed desirable to examine how far the phenom- 
enon of ‘stress equivalence of solution hardening’ could be explained by the model, the 
basic features of which we shall first briefly highlight. 
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2. The KPF model 

In the KPF model of SSH, initially proposed by Feltham [2] for concentrated solid solutions 
based on metals with a low Peierls potential and later found to be applicable also to 
dilute solid solutions [5-81 , the elementary activation process, reviewed in detail by 
Feltham and Kauser [7], comprises stress-assisted, thermally activated unpinning of 
edge-dislocation segments from short rows of solute-atom pinning points at the CRSS z, 
which varies with temperature T and solute concentration c, as given by the relation [4] 

z = to exp(-W/WO) to = 4Uc*lJ2/nb3 WO = n(Cb3Uc*'/2)'/2 (1) 

W = mkT m = 1n(yO/Y), (2) 

with 

Here to is the CRSS as T+ 0 K,  G is the shear modulus, b is the length of the Burgers 
vector, k is the Boltzmann constant and U is, in the tight-binding approximation used, 
the energy expended per solute atom for the initial breakaway of a dislocation segment 
from a group of such aligned pinners in the process of nucleation of a kink pair; m is a 
constant proportional to the logarithm of the deformation rate .1' and is usually equal to 
about 25; W represents the stress-reduced barrier height or activation energy (free 
enthalpy) of formation of a kink pair, akin to the 'bulge' referred to by Arsenault and 
Cadman [9], and WO has been shown [lo,  111 to be numerically equal to 

(i) the energy of interaction between the dislocation segment of length Lo = 
b(4Gn/z0)'i2 involved in the unit activation process and solute atoms close to it, 

(ii) the increase in line energy of the unpinned dislocation segment of initial length 
Lo during the formation of a kink pair of maximum height nb, and 

(iii) one half of the work done by the applied shear stress zo in moving the dislocation 
segment after its breakaway from solute-atom pinning points, over the mean dis- 
placement Inb in an activated jump. 

An effective concentration c* = c + co has been used in equation (1) instead of 
the solute concentration c because the contribution to c* made by the 'equivalent' 
concentration co [ 121 allows semi-empirically for the presence in the crystals of barriers 
to dislocation motion other than the solute atoms and leads to a non-zero CRSS for 
c = 0, providing a measure of the resistance of the unalloyed crystal to plastic flow. 
Numerically, cO is equal to the common intercept on the negative c axis made by the 
extrapolated z versus c isotherms. The term U C * ' / ~  therefore represents the binding 
energy per unit length of dislocation with the 'effective' pinning points in the alloy. 
Except for rather dilute alloys, co may usually be omitted. 

For the temperature and concentration dependences of the activation volume U ,  

customarily defined as ( - d W/d z) or kT[d In y/d t ]  T ,  one can readily find from 
equations (1) and (2) that 

U = uo  exp(W/Wo) U = ab n2 (Gb / Uc* ' I 2 )  ' I 2 .  (3) 

It should be noted that equations (1) and (3) are convenient representations of the 
somewhat complex expressions given in [3] and prove adequate up to temperatures 
where, owing to the occurrence of diffusional recovery processes in the crystal, the 
model used would cease to be applicable. From equations (1) and (3) we also find that 
for a given alloy the product TU is constant, i.e. 

ZU = t O U O  = WO. (4) 



Stress equivalence of SSH 5799 

Figure 1. The CRSS of some copper-based 
allovs as a function of temperature in a log- 
linear representation where the symbols 
denote the data obtained by Basinski er a1 
[I]: 0,  Cu-OSat.% AI-0.1 at .% Ag; 

100 200  300 0, Cu-l.Oat.% AI; A ,  Cu-OSat.% AI: 
0, Cu-0.1 at .% Ag; V, Cu-0.5 at .% Si. 

1 
0 
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3. Comparison with experimental data 

Reference to figure 1 shows the temperature dependence of the CRSS for some copper- 
based alloys corresponding to two levels of solution hardening. Disregarding the devi- 
ation from the generally expected behaviour below a certain temperature To = 70 K, 
the straight lines drawn through the t versus T data points taken from [ l ]  and plotted 
on log-linear coordinates yield WO on using equation (1) in the form d (In z)/d T = 
-mK/Wo, and zo as the intercepts made by them on the stress axis by extrapolation. 
The values of WO and zo thus obtained, along with those for other copper-based alloys 
deformed by Basinski et a1 [ 11, are given in table 1. 

Concerning the anomalous mechanical response observed at T < 70 K (figure l), 
which is usually associated with Granato’s inertial effects criticised by Feltham [13] for 
various reasons, it will be shown to be explicable in terms of the deformation-induced 
enhancement of local stresses at barriers to the movement of dislocations [14-291 at 
temperatures sufficiently low to reduce thermal recovery to comparatively low levels. 
In FCC metals the effect seems to arise mainly as a consequence of mutual attraction 
between two arms of the ‘hairpin’ in glide dislocations pinned under stress in Orowan 
configurations at strong obstacles [14,27]. The stress z in the relations describing 
deformation kinetics, e.g. in equation (l), has then to be multiplied by a stress-con- 
centration factor f ( T ) ,  which for ‘hairpin’ configurations is estimated to lie between 1 
and 4 [14,27], its value increasing with decreasing temperature. 

In the case of solid solutions, the anomalies are similar to those observed in pure 
metals, and the Bacon-Scattergood [14] ‘hairpin’ mechanism is expected to be operative 
at low temperatures. However, the arms of the dislocations forming the cusp are 
now impeded in their motion by pinning with dispersed solute atoms; the attractive 
interaction between the arms is consequently reduced, as pinners (i.e. solute atoms) 
oppose mutual attraction. This leads to a reduction in the value off(T) compared with 
that estimated for pure metals. The evidence obtained by Feltham and Kauser [7], 
Ghauri er a1 [23] and Butt er a1 [29] in the case of Cu-Zn (c = 0.03-1.0 at .% Zn), Cu- 
Zn (c = 12-35 at .% Zn) and Cu-Mn (c = 0.11-7.6 at .% Mn) alloys, respectively, lends 
support to this proposal. 

Now the t versus T data for the alloys referred to in figure 1 have been depicted in 
linear-linear coordinates in figure 2. The curves drawn through the data points comply 
with equation (1) in which the values of c*, to and WO taken from table 1 were used and, 
below the peak temperature To = 70 K, t was multiplied by a stress-concentration factor 
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Figure2. The temperature dependenceof the cop- 
per-based alloys referred to in figure 1. The theor- 
etical curves drawn through the data points were 
obtained by means of equation (1) in which t was 
replaced by t(T' + To)/(  T' + T )  below a certain 
temperature To = 70 K at which deviations from 
the generally expected t versus T behaviour sets 
in; the values of T' used were 190 and 185 K for 
the top and bottom curves, respectively, whereas 
those of to and WO are given in table 1 .  
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Figure3. The temperature dependence of the acti- 
vation volume for the copper-based alloys 
referred to in figures 1 and 2. The full curves 
comply with equation (3) in which U was replaced 
by U( 7" + T ) / (  T' + To) below To = 70 K, and the 
values of T' ,  WO and uo used were the same given 
in the caption to figure 2. 

f ( T )  = (T'  + T,)/(T' + T ) ,  T' being a constant sensitive to the amount and mode of 
solute distribution in the crystal (see, e.g., [23,28,29]), to make allowance for the self- 
stress of dislocations at rather low temperatures. The value off(  T )  used here ranges 
from 1 to 1.4, the latter being smaller, in accord with the expectation, than that estimated 
for pure FCC metals [ 141. 

Similarly the points in figure 3 denote the experimental values of the activation 
volume U = kT[d(ln V)/dz], appertaining to two levels of solution hardening referred 
to in figures 1 and 2, as a function of temperature, whereas the full curves are theoretical, 
i.e. obtained by means of equation (3) using the values of WO and uo (table l ) ,  and 
dividing U byf(T) = (T' + To)/(T' + T )  below a certain temperature To = 70 K (since 
U l / z  as per equation (4)) to encompass the anomalous behaviour at low temperatures, 

Figure 4 shows the dependence of the activation volume on the CRSS at 78 and 298 K; 
the curves represent, within experimental error, the data of Basinski et a1 [l] for 22 
copper-based alloys; the points are theoretical, i.e. obtained as described above with 
the parameters given in table 1. It should be noted that, as the points denoting the 
calculated values for the alloys labelled S ,  T and U (table 1) are coincident with those 
for alloys E, F and N, respectively, they have been omitted for clarity. One observes 
that the KPF model accounts rather well for the temperature dependence of the CRSS and 
of the associated activation volume, except for somewhat uncertain detail appertaining 
to low temperatures in figure 3 , where the concept of deformation-induced enhancement 
of local stress may account, in part at least, for the discrepancies. 
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Figure 4. The dependence of the activation vol- 
ume on the CRSS and on the temperature for Cu- 
AI (A) ,  Cu-Ni (0) and Cu-Ag (7)  alloys. The 
curves represent the experimental data of Basin- 
ski et al [ 11 whereas the symbols denote theoretical 
values computed with the help of equations (1) 
and (3) using the parameters given in table 1. 

Knowing the values of W O ,  to and c*,  one can obtain n and U using the relations 

n3  = ( W $ / Z O > [ ~ G / ( G ~ ~ ) ~ ]  ( 5 )  

U = W$/Gb3n2c* ‘I2 (6) 
which are readily derivable from the basic definitions of WO and zo in terms of n and U 
(equation (1)). The values of y1 and U thus obtained facilitate the determination of 
Uc*’/* (the binding energyper unit length of dislocation with the effective pinning points 
in the alloy), Lo (the initial length of the dislocation segment involved in the unit 
activation process as T+ 0 K) and N = &/A (the number of alloy atoms with which the 
dislocation segment Lo is initially inned prior to the nucleation of a kink pair of 

atoms; the values for copper- and silver-based alloys deformed by Basinski et a1 [ 11 are 
given in tables 1 and 2, respectively. It should be noted that N *  1 for each alloy 
containing solute atoms in the range 0.01-20 at. %, which means that Friedel’s break- 
away from individual pinners is unlikely even for the most dilute alloy referred to. 

Concerning the ‘stress equivalence of solution hardening’, i.e. the superimposition 
of the t versus T curves of solid solutions with the same base but different solutes, 
equation (1) yields the conditions 

and 

or, in terms of n and U [7],  

and 

maximum height nb) where A = b/c I f :  is the average spacing between neighbouring alloy 

( t O ) 1  = (2O)2 = ( 2 0 1 3  = ’ ’ . (7) 

= = = . . . (8) 

(9) 

(10) 

n1 = n2 = n3 = . . . 

(uc*1/2)1 = (uc*1/2)2 = ( U c q 3  = .  * .. 
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The numerical data given in tables 1 and 2 lend substance to these relations. Moreover, 
equations (7) and (8) in conjunction with equation (4) suggest that solid solutions of 
different solutes in a given solvent metal, which exhibit identical z versus Tbehaviour, 
will also satisfy the condition 

and hence these will have a common U versus T curve (equation (3)) as well. This 
inference is borne out by the U versus Tmeasurements (figure 3) made by Basinski et a1 
[l] with the copper-based alloys. It should be, however, remembered that, in the case 
of stress-equivalent solid solutions in which the CRSS versus T anomaly occurs, the 
condition [7] 

has to be added to equations (7) and (8) for T S To. Deviations from stress equivalence 
compatible with failure of this criterion have been observed with copper single crystals 
containing either manganese or germanium in solid solution [30]. 

It is worthy of note that the concept of the stress equivalence of solution hardening 
is also partly explicable [31-331 on the basis of the revised versions of the models of 
Labusch [34] and Nabarro [35], although there are clear discrepancies between the 
observed and the predicted temperature dependences of the flow stress. In the models 
referred to, the length of the dislocation segment involved in a unit activation process 
and the CRSS at 0 K are governed by the parameters cf" and w,  wheref, is the maximum 
force of interaction between a solute atom and a dislocation and w is the range of this 
force. The parameters cf" and w appear as a ratio in the expression for the dislocation 
length and as a product in that for the CRSS at 0 K. Thus two solid solutions of different 
solutes in a given solvent metal will have identical values of zo if ( ~ f $ , , ) ~  = ( ~ f $ , , ) ~  and 
w1 = w2; this is analogous to the stress-equivalence rules enunciated by equations (9) 
and (10). However, if the low-temperature effects, whether inertial or non-inertial, also 
contribute to the CRSS, then two solid solutions with identical values of cf$,, and w will 
not be stress equivalent unless the low-temperature contributions are also identical (e.g. 
equation (12)). This criterion is not encompassed by the Labusch [34] and Nabarro [35] 
models. Similarly the stress dependence of the activation volume in copper- and silver- 
based alloys predicted at 0 K by Nabarro [31] does not correlate with that observed at 
78 and 298 K by Basinski et a1 [ l ] ;  the predicted value of exponent p in the relation 
U t - P  is f in the Labusch regime and 2 in the Friedel limit, whereas the observed values 
are about 3 and 1 for copper alloys and 8 for silver alloys in the Labusch regime while the 
situation is not clear in the so-called Friedel limit. Also, the abrupt vertical step predicted 
in the theoretical u0 versus zo curve at rather high stresses due to a change from a regime 
in which the two partials of a dissociated dislocation move in a coordinated manner to a 
regime in which the partials move independently is not observed experimentally. 

Reverting to the KPF model, figures 5(a) and 5(b) show the correlations between 
z(Tl) - t ( T 2 )  and z (T , ) ,  with T1 = 78 K and T2 = 298 K,  for copper- and silver-based 
alloys, respectively. Here the points denoted by letters were obtained by means of the 
relation [18] 

and the curves represent, within experimental error, measured values [l] .  These were 
rather close to the corresponding values determined on the basis of the data given in the 
tables and have been omitted for clarity. Again, as the theoretical points for alloys S ,  T 
and U (table 1) are coincident with those for alloys E, F and N, respectively, they have 
not been shown in figure 5(a). A similar correlation can also be shown to hold for 

( U O ) l  = ( U 0 ) 2  = ( U 0 ) 3  = * * * (11) 

fl(T) = f 2 ( T )  = f 3 ( T )  = .  . . (12) 

[ z ( T , )  - a ) l / Q l )  = 1 - exp[-("o) (T2 - T1)I (13) 
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Figure 5 .  The dependence of t(78)-~(298) on t ( 7 8 )  for the (a )  copper-based alloys ( A ,  Cu- 
Al; 0, Cu-Ni, V, Cu-Ag) and ( b )  silver-based alloys ( A ,  Ag-In; 0, Ag-Sn; 0, Ag-Au) 
referred to in tables 1 and 2, respectively. The full curves were drawn through experimental 
values [l] (not shown); the points were determined by means of equation (13) with the data 
given in the tables. 

u(TJ  - v(T , )  and u(T,)  in accord with the expression 

which has been derived from equation (3). 
Reference to figure 5(b) shows loss of stress equivalence in the case of Ag-Sn 

(c > 0.25 at .% Sn) alloys. Butt and Shami [36] have examined this problem in con- 
siderable detail for numerous copper- and silver-based alloys and found that it seems to 
be related to the change in the observed value of the exponent r in the relation t CC c' 
with temperature. In fact deviations from random distribution of solute atoms occur in 
solid-solution crystals, which contain either a high concentration of solute atoms of small 
size-misfit factor S = (l/b)(db/dc) or even a low concentration of solute atoms with 
large b-values [8,37]; the change in the mode of solute distribution inter alia influences 
the temperature and concentration dependences of the CRSS of solid solutions 
[6, 11,31,38] and hence contributes to the loss of stress equivalence. 

Now, for a given change in the test temperature AT = T2 - T I  of an alloy, one can 
readily find from equations (13) and (14) an expression for the product of accompanying 

[U(TZ) - u(T,)l/4T1) = exPK"o>(T2 - TI11 - 1 (14) 
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Figure 6. The relation between u(298)-0(78) and ~(78)-~(298) for the (a) copper-based 
alloys ( A ,  Cu-AI; 0 ,  Cu-Ni; V, Cu-Ag; 0, Cu-Si; 0, Cu-AI-Ag) and ( b )  silver-based 
alloys ( A ,  Ag-In; 0, Ag-Sn; I?, Ag-Au) referred to in tables 1 and 2, respectively. In (a )  
the symbols denote the experimental values of Basinski et a1 [l]; as the theoretical values 
obtained by the use of equation (15) are close to the experimental values, they have been 
omitted. In (b)  the fullsymbols represent experimental data takenfrom [ 11; the opensymbols 
are theoretical, i.e. computed through equation (15) by use of data given in table 2. 

121781 - Z(298)1(MPaI 

changes AT = T (  TI) - z( T2)  in the CRSS and changes AV = U (  T2) - U (  T , )  in the associ- 
ated activation volume. It is given by 

AT AV = 2Wo[cosh(mk AT/Wo) - 11. (15) 
Thus figures 6(a) and 6(b)  refer to the dependence of Au = 4 T 2 )  - u(T,)  on AT = 
z ( T , )  - z ( T 2 ) ,  with Tl = 78 K and T, = 298 K for copper- and silver-based solid 
solutions, respectively. The experimental values of Basinski et a1 [ 11 for copper-based 
alloys have been denoted by symbols in figure 6(a);  those derived by means of equation 
(15) on using the data given in table 1 were found to be close to the experimental values 
and have been omitted for clarity. Similarly, the full symbols in figure 6(b)  denote 
the data of Basinski et a1 [l] for silver-based alloys whereas the open symbols were 
determined by means of equation (15) in which the data given in table 2 were used. 
Although the experimental values of AV in figure 6(b)  are somewhat higher than the 
calculated values, most probably owing to the occurrence of possible diffusional effects 
at room temperature, yet the functional form of Au versus A z  can be seen to be the same 
in theory and experiment. 

On the other hand, although Nabarro derived in his recent paper [32] a power law 
for the stress dependence of the activation volume ( u o  cc zo2l3) in the Labusch regime 
better than the earlier law ( u o  cc [31], yet the theoretical value of Au = 
~ ( 2 9 8 )  - ~ ( 7 8 )  at a given stress level due to the temperature change AT = 220 K was 
found to be extremely small compared with the experimental value in the case of silver- 
based alloys, and even negative for copper-based alloys. This clearly indicates, as 
remarked by Nabarro [32], the inability of the Labusch and Nabarro models to predict 
the temperature dependence of the CRSS and of the activation volume correctly. 

Finally, it is evident from figures 5 and 6 that for alloys based on a given metal 
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(i) the change t( T I )  - z( T2)  in the CRSS, due to increase in temperature from TI  to 
T2 is equivalent to the CRSS t( TI) and 

(ii) the change U( T2)  - U( T I )  in the associated activation volume is equivalent to the 
change t( TI) - z( T2) in the CRSS. 

However, Ag-0.5 at.% Sn and Ag-0.6 at.% Sn alloys, denoted by letters n and o 
respectively, which do not satisfy the stress-equivalent conditions (equations (7), (8) 
and (ll)), as one can readily verify from the numerical data given in table 2, are 
exceptions to it. 

4. Conclusions 

One may conclude from the foregoing considerations that the ‘stress equivalence of 
solution hardening’, i.e. correlation of the data for both the temperature and the strain- 
rate dependence of the CRSS of alloys with the amount of solution hardening rather than 
with the concentration and type of solute, is fully explicable in terms of the KPF model 
of SSH. Also, in accord with the conviction of Basinski et a1 [l], a single mechanism of 
SSH, which involves the interaction between a dislocation and several solute atoms, is 
operative in dilute as well as in concentrated alloys, except possibly in alloys with solute 
content below about 100 ppm. 
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